Nobel de Química por revelar códigos de proteínas mediante IA
El Nobel de Química ha premiado este miércoles a los estadounidenses David Baker y John M. Jumper y al británico Demis Hassabis por descifrar el código de las estructuras de las proteínas a través del uso de la computación y la inteligencia artificial (IA).
Hassabis y Jumper utilizaron la IA para predecir la estructura de casi todas las proteínas conocidas; Baker desarrolló métodos computarizados para crear proteínas que no existían previamente y, en muchos casos, con nuevas funciones, señaló en su motivación la Real Academia de las Ciencias sueca.
Sus hallazgos permiten una mejor comprensión de las funciones vitales humanas, entre ellas el porqué de algunas enfermedades y la forma en que ocurre la resistencia antibiótica; así como la creación de nuevos nanomateriales, minisensores y una industria química menos contaminante, además de acelerar el desarrollo de vacunas.
Las proteínas son las moléculas que hacen posible la vida; los ladrillos que forman los huesos, la piel; los motores que impulsan nuestros músculos; las máquinas que leen, copian y reparan el ADN; las que mantienen nuestras neuronas y nuestro cerebro listos, anticuerpos que permiten nuestra respuesta inmunitaria.
Así lo resumió Johan Aqvist de la Academia Sueca de Ciencia para explicar el premio y agregó que “para entender cómo funciona la vida, primero tenemos que comprender la forma de las proteínas.
El experto indicó que el premio de este año “ha abierto un mundo completamente nuevo de estructuras de proteínas: Unas que se sabía que existían, pero no cómo eran, y otras que se diseñan desde cero, que no existen en la naturaleza, pero “que pueden hacer todo tipo de cosas maravillosas”.
Baker, que intervino por teléfono durante la rueda de prensa, dijo estar “profundamente honrado” por el galardón y entusiasmado por “todas las formas en que el diseño de proteínas puede hacer del mundo un lugar mejor”, como en la salud o la medicina.
En 1994 se puso en marcha la Evaluación Crítica de las Técnicas para la Predicción Estructural Proteica (CASP), un experimento mundial bienal comunitario para predecir la estructura de las proteínas, que, sin embargo, apenas registró avances en dos décadas.
Demis Hassabis, un experto en neurociencia, cofundó en 2010 DeepMind, una compañía dedicada al desarrollo de modelos de IA para juegos de mesa y que fue vendida al gigante tecnológico Google cuatro años más tarde.
En 2018 Hassabis inscribió a su firma en el CASP, logrando con su modelo de IA AlphaFold un 60 por ciento de predicciones correctas, superior al 40 por ciento máximo registrado como máximo por otros científicos en años anteriores, pero todavía insuficiente.